TABLE OF CONTENTS

- INTRODUCTION ... 2
- BACKGROUND ... 5
- TECHNICAL BACKGROUND ON VALIDATION OF SAF .. 12
- ECONOMICS ... 16
- FREQUENTLY ASKED QUESTIONS 19
- ADDITIONAL TECHNICAL INFORMATION 24
INTRODUCTION

Why This Guide?

Awareness and concern continue to grow about the harmful effects on the atmosphere of greenhouse gas (GHG) emissions from industrial installations, power plants, surface vehicles, ocean-going vessels and aircraft. The aviation industry leads the way in taking steps to improve its efficiency, and address its emissions impact.

Aviation—including business aviation—is a key contributor to global economic growth, commercial trade and increased prosperity, enhancing communication, linking markets and people, while providing economic opportunity and well-paying, high-skill jobs for millions of people. The industry contributes positively to the bottom line of businesses that depend on flexibility and efficiency to optimize economic opportunities, regardless of where they are located. But the industry’s license for continued growth is dependent on its ability to do so in a sustainable, environmentally responsible manner. According to the International Civil Aviation Organization (ICAO) 2019 Environmental Report, global business aviation operations represent 0.04% of CO₂ emissions caused by human activity. Although this represents a tiny fraction of overall emissions, it is vital that business aviation does its part to continue the industry’s successful work to date to reduce this footprint.

Figure 1. Business Aviation Sector’s Contribution to Global GHG Emissions

Most stakeholders acknowledge civil aviation’s contribution of 2% of global CO₂ and 3% of GHG emissions, as per The Intergovernmental Panel on Climate Change report estimates. The business aviation contribution is estimated at 2% of aviation emissions or 0.04% of global emissions.

The aviation industry is among the first to have developed internationally-agreed-upon carbon emission-reduction standards for both aircraft and operators, yet more must be done, including a focus on improving the efficiency of products and operations.

The good news is, considerable progress has been made in this regard. In 2009, the business aviation industry — representing the manufacturer and operator sectors — announced specific commitments regarding emissions reduction.\(^2\) To achieve the goals outlined in that announcement, a four-pillar strategy was set forth — those four pillars are outlined in more detail later in this publication.

The single-largest potential reduction in aviation’s GHG emissions — and the key to reaching goals for reducing them — will come about through the broad adoption of sustainable aviation fuel (SAF) in place of conventional jet fuel in use today. There are other, cleaner alternatives to fossil fuels being developed in addition to SAF (e.g., electrification and hydrogen fuel), but these remain longer-term alternatives, whereas SAF has been proven to work, and is ready to be scaled today.

Increasing the industry’s uptake of SAF is important, but it is clear, and understandable, that many questions remain about SAF, especially as it is still relatively new. This guide is designed, in part, to explain what SAF is, and what it is not. The aim of this resource is to answer questions and allay concerns for the community of aircraft operators, fixed-base operators (FBOs), owners, pilots, fuel providers, airports and others regarding the performance, safety and appropriateness of using SAF wherever it is available.

SAF is available today, but not widely so. Certain factors are holding back the full deployment and commercialization of SAF, though safety and performance are not among them. In fact, SAF have undergone a rigorous certification process.

As outlined below, SAF that has been produced to meet the requirements of ASTM D7566 and re-identified as ASTM D1655 (known as Jet-A, or Jet A-1) has gone through an exhaustive and resource-intensive testing program before approval for use. Civil aviation authorities and aviation industry stakeholders, including original equipment manufacturers (OEMs), have put in place a comprehensive and thorough process to test and approve SAF. In addition, the world’s leading aviation regulatory authorities – including the Federal Aviation Administration (FAA), the European Aviation Safety Agency (EASA) and others – have issued clear guidance allowing the use of SAF, following blending that has been re-identified and certified as meeting ASTM D1655 standards in turbine aircraft.

As the world’s leading business aviation industry associations representing manufacturers, operators, FBOs and others – and with the support of the Commercial Aviation Alternative Fuels Initiative (CAAFI) – the European Business Aviation Association (EBAA), the General Aviation Manufacturers Association (GAMA), the International Business Aviation Council (IBAC) and its constituents, the National Air Transportation Association (NATA) and the National Business Aviation Association (NBAA) are confident that this guide will answer questions about SAF. This resource also includes organizational contact and other information for further questions, or information needs.

SAF: Increasing Regulatory Acceptance

Increasingly, the availability and growing use of sustainable aviation fuel (SAF) is a top priority for civil aviation worldwide. In September 2019, the 40th Assembly of the International Civil Aviation Organization acknowledged the need for SAF to be developed and deployed in an economically feasible manner and requested that its 193 member states adopt positive measures to encourage increased production and consumption of SAF for aviation.

Concurrently, the European Union established the European Green Deal to tackle climate change and environmental-related challenges; it supports an increase in SAF production and availability as playing a significant role in reducing the environmental impact of civil aviation.

Worth noting, numerous key Civil Aviation Authorities globally are actively supporting the sustainable growth of civil aviation in their respective countries, and focus on SAF as an important component in this drive towards sustainability. In addition to the U.S. Federal Aviation Administration (see above) - other leading CAAs publicly calling for increased SAF use include: the European Union Aviation Safety Agency, Transport Canada Civil Aviation, National Civil Aviation Agency in Brazil, and the Civil Aviation Authority of Singapore, to name a few.
BACKGROUND

What is the role of sustainable aviation fuel (SAF) in helping the industry meet its climate change commitments?

Sustainable Aviation Fuel (SAF) is a colloquial term used in two primary ways:

1. To describe the family of jet fuels comprised of a blend of conventional jet fuel with non-conventional, more sustainable blending agents. This SAF blend is what is defined as the fully ready drop-in fuel that can be used to replace conventional jet fuel.

2. To serve as the moniker for the sustainable blending component alone, because it is the blending component that enables the reduction in net greenhouse gas emissions for the industry. The SAF blending component is also referred to as “neat SAF,” or in some cases, simply SAF.

The discussion that follows points to the fact that the term can be used either way, and highlights the focus of the industry on production of the blending agent, whether in neat or blended form. As SAF development continues to expand and mature, it is likely a point will be reached where some SAF blending components will be able to be used as drop-in fuels without requiring initial blending; therefore, the dual usage is sufficient for now, given that both uses will be needed in the near future.

SAF is being pursued by the industry to:

- Reduce net life-cycle carbon dioxide (CO\(_2\)) emissions from aviation operations.
- Enhance the sustainability of aviation with a fuel source superior to conventional jet fuel in economic, social and environmental aspects.
- Enable drop-in jet fuel production from non-conventional sources (multiple feedstocks and conversion processes), so no changes are required in aircraft or engine fuel systems, distribution infrastructure or storage facilities.

Because SAF is a relatively recently adopted term, some who have been working in this field for a while may also use the terms bio-jet, renewable jet, bio-kerosene, alternative jet, non-conventional jet fuel, etc., or specifically by the several names for the conversion pathways outlined in ASTM D7566 (e.g., HEFA-SPK, or Synthetic Paraffinic Kerosene produced from the Hydroprocessing of Esters and Fatty Acids). Any SAF compliant with the requirements of ASTM D7566 is recognized as meeting the characteristics of traditional petroleum-based conventional jet fuel approved under ASTM D1655 (see next page).

“SAF is a critical drop-in jet fuel technology with significant potential to address aviation environmental and energy concerns. FAA has sponsored SAF development via CAAFI and other programs since 2006.”

Kevin Welsh, Executive Director, Office of Environment & Energy, Federal Aviation Administration

3. Note that in the 2018 version of this guide, we used the terminology sustainable alternative jet fuel (SAJF). Since that version was published, the International Civil Aviation Organization (ICAO) adopted a simplified name and acronym for this fuel, sustainable aviation fuel or SAF, and has asked the entire industry to follow suit.
The name “Sustainable Aviation Fuel” denotes three key elements, two of which are reflected in the name, and another that is inherent in achieving sustainability:

1. **Sustainability**: This is defined as something that can be continually and repeatedly resourced in a manner consistent with economic, social and environmental aims; specifically, something that conserves and promotes an ecological balance by avoiding depletion of natural resources and mitigates contribution to climate change, as well as other sustainability criteria generally.

2. **Aviation Fuel**: SAF blends, when produced to the requirements established and approved by the industry as outlined in ASTM D7566, meet all the technical and certification requirements for use in turbine-powered aircraft engines, and can be re-identified as meeting the ASTM D1655 standard.

3. **Consistently Defined**: An SAF blend is a blend of conventional fuel\(^4\) and non-conventionally synthesized blending agents.\(^5\) The non-conventional agents may be derived from many sources whose chemical constituents can be converted to the set of pure hydrocarbons that comprise jet fuel. These substances are also processed into jet-fuel-compatible molecules in an alternate manner to simply refining crude oil (e.g., via thermochemical, biochemical and catalytic production processes). Feedstocks for SAF are also varied; they include cooking oil, plant oils, solid municipal waste (trash), wood waste, waste gases, sugars, purpose-grown biomass and agricultural residues, among others.

The level of carbon intensity or GHG reduction that can be claimed by the end user is almost exclusively driven by the life-cycle assessment of the renewable

4. ASTM D1655 currently defines conventional fuel in Paragraph 6.1.1 as: Aviation turbine fuel, except as otherwise specified in this specification, shall consist predominantly of refined hydrocarbons derived from conventional sources including crude oil, natural gas liquid condensates, heavy oil, shale oil and oil sands. So, ASTM D7566 was created to govern the properties of jet fuel produced from any other sources (i.e., alternative or non-conventional).

5. It is possible that the industry will approve 100% drop-in synthetic fuels within a few years, and in that case, there will be no blending requirement.

6. Carbon index is a term that refers to the amount of net lifecycle CO\(_2\) contained within a fuel. It is expressed in units of equivalent grams of CO\(_2\) per energy content, or gCO\(_2\)/MJ. ICAO has established a standard level of carbon index for petroleum fuels of 89 gCO\(_2\)/MJ.
component of the blended fuel. So, the level of blending does matter to the end user, who may be interested in understanding exactly how much they are improving their carbon footprint, or to others involved in the supply chain, who are interested in understanding how well their SAF complies with policy mandates and incentives. Different types of SAF also have different sustainability or carbon index scores, depending on the type of feedstock used, the conversion technology and the logistics of the supply chain.

Relative to petroleum-based conventional fuels, SAF blending components may deliver a net reduction in carbon dioxide (CO$_2$) emissions across its life-cycle. This means that even when taking into consideration the CO$_2$ emissions generated during the production of the SAF (from the equipment needed to grow crops, transport the raw material, refine the fuel and distribute it), its use has been proven to provide significant reductions in overall CO$_2$ lifecycle emissions, compared to conventional fuels. This is because the feedstocks that are used to produce the SAF blending components – cooking oil, plant oils, solid municipal waste (trash), wood waste, waste gases, sugars, purpose-grown biomass and agricultural residues, among others – consume carbon from the CO$_2$ already in Earth’s biosphere, and not out of petroleum that is sequestered in the ground (see Figure 2).

The industry has been predominantly focused on SAF blending components that provide greater than 50 percent reductions in net greenhouse gases because various policies incentivize such reductions. However, some sustainable fuel production approaches are more aggressive by preventing additional emissions from related processes (e.g., reduction of landfill gas production), putting carbon back into the ground via production and use of biochar, or use of gaseous CO2 sequestration. SAF also contains fewer impurities, such as sulphur or complex hydrocarbons that do not burn well (such as naphthalenes), leading to even greater reductions in sulphur dioxide (SO$_2$) and particulate matter (PM) emissions and improved local air quality.

Progress on developing SAF has been moderate, but is accelerating. Technical barriers to the production of SAF have been largely overcome. There are now several different “pathways” approved by international aviation regulatory authorities and available to producers to convert different feedstocks into SAF blending agents. There are also other pathways currently under review by the industry for potential inclusion under ASTM D7566. Up to this point, there has been a modest level of commercial-scale investment in production facilities for SAF, but a great deal more is still needed to make the deployment and commercialization of SAF a mainstream occurrence in the near term.

7. As of this writing, there are seven pathways. Up to date information can be found in ASTM D7566, or at one of several reference sites including CAAFI’s: http://www.caafi.org/focus_areas/fuel_qualification.html
Currently, the ability for business aviation to use SAF is hampered due to inadequate production, a lack of supply chain infrastructure and a lack of understanding, and compelling economic proposition, about the fuel. Despite these realities, the use of SAF by aviation worldwide is growing, with several hundred thousand flights having already been conducted by the civil aviation sector with SAF, and with OEMs, airlines and others having undertaken countless demonstration flights.

SAF has been made available for continuous delivery to a number of major airports worldwide, based on long-term contracting between airlines and producers/suppliers. In these cases, SAF is not sequestered for use on individual operations; rather it is incorporated directly into airport fuel farms, and the benefits are allocated only to the end-use purchaser. SAF has also been made available on an ad hoc basis to several business aviation locations around the world, most being associated with high-profile events intended to serve as educational and awareness initiatives for industry, policymakers and the general public. The civil aviation industry is working to make it more routinely available and in greater quantities.

The routine use of SAF is expected to continue to expand to additional airports worldwide, based on previous and ongoing commercialization announcements and supply chain infrastructure initiatives. A critical piece to scaling up the supply and use of SAF is industry buy-in. The industry can help advance this priority by indicating its interest in SAF to fuel suppliers and government officials.

8. For an up-to-date set of statistics, check www.enviro.aero/SAF
Industry Commitments on Climate Change:

In November 2009, the business aviation community — comprised of the International Business Aviation Council (IBAC) representing the operators, and the General Aviation Manufacturers Association (GAMA) representing the manufacturers — published the Business Aviation Commitment on Climate Change (BACCC), which announced three aspirational goals to mitigate the industry’s emissions impact. These goals are:

1. To achieve carbon-neutral growth from 2020;
2. To improve fuel efficiency by two percent per year from 2010 until 2020, and;
3. To reduce CO₂ emissions by 50 percent by 2050 relative to 2005.

When the industry introduced this roadmap in 2009, it was clear that achievement of these goals would depend on improvements across four pillars:

1. **Technology**
 More efficient engines and airframes, and adoption of other technologies;

2. **Sustainable Aviation Fuel**
 The development and commercialization of non-conventional jet fuels (SAF) that deliver reductions in net lifecycle greenhouse gases versus petroleum-derived jet fuel;

3. **Operations and Infrastructure**
 More efficient operations, stemming from continued progress on air-traffic management, along with measures including reduced payload, streamlined flight planning, single-engine taxiing, etc.;

4. **Market-based Measures**
 Policy instruments that place a cost on carbon emissions and are considered temporary measures until, combined with the effects of the other pillars, the intended target is met. Such measures include carbon offsetting and emissions trading, each of which have features to reduce their costs by using SAF.

A critical piece to scaling up the supply and use of SAF is industry buy-in.
Progress on each of these pillars requires action and significant investment by the aviation industry, as well as other stakeholders and governments. While progress has been uneven, the aviation industry has kept its focus on improving efficiency and reducing its CO₂ footprint via the four pillars. Consider the following record of accomplishment:

Technology
Manufacturers are developing and bringing to market new engines, airframes and other aircraft components and materials that produce improvements in fuel efficiency; they are also developing avionics that allow more efficient and safe routing, bringing additional savings in CO₂ emissions.

Sustainable Aviation Fuel
This “pillar” is the focus of this publication. The development and commercial deployment of SAF offers the most promising opportunity for reducing net GHG emissions from aviation operations. This is because GHG reductions commence immediately with the use of SAF—operators do not have to wait for advanced technologies to make their way into the operational fleet via replacement or addition of new aircraft.

Operations and Infrastructure
Operators are implementing efficiency improvements in the air and on the ground, such as increased use of electrical ground power, more direct routing and other weight reductions on flights, etc. Although much progress has been made, much work remains to be done to complete the transformation of air traffic control (ATC) from a ground-based to a satellite-based system. Authorities and political leaders need to make the necessary, continued investment in this vital infrastructure, given the myriad benefits of full ATC modernization, including system-wide efficiencies that reduce GHG emissions.

Market-Based Measures
In 2016, ICAO member states agreed to design a global carbon offsetting program, a market-based measure (MBM), as part of its broader strategy to reduce emissions from international aviation through its ‘basket of measures’ approach (similar to the industry’s four pillars): new technologies, improved operations, modernized infrastructure and ATM, and a global MBM. The new MBM, in the form of CORSIA, was intended to cap the growth of international aviation emissions from 2021 through the use of purchased offsets.

Under the CORSIA plan, certain operators will have to offset carbon emissions (their obligation) from their international operations that are above the 2019 baseline by purchasing either approved CORSIA Eligible Emission Units or CORSIA Eligible Fuels to meet their obligation, or a combination of both.

In practice, CORSIA applies to only a small percentage of business aviation operators globally. A credit process has been developed by ICAO technical bodies that will define how credit will be given for the use of “CORSIA Eligible Fuels,” which includes SAF, by operators in meeting CORSIA obligations once the scheme starts with its Pilot Phase in January 2021 (when emissions obligations will start).

Detailed information on CORSIA, CORSIA Eligible Fuels and CORSIA Eligible Emission Units can be found on the ICAO website. In addition, IBAC has prepared a “Countdown to CORSIA” resource page on its website, with information specifically tailored to the business aviation community.

11. CORSIA eligible fuels (CEF) include Sustainable Aviation Fuels (SAF) and Lower Carbon Aviation Fuels (LCF). https://www.icao.int/environmental-protection/CORSIA/Pages/CORSIA-Eligible-Fuels.aspx
The EU ETS\(^4\) also provides incentives to aircraft operators for the use of SAF that must comply with sustainability criteria defined in the Renewable Energy Directive (RED), which offers emissions credits under the ETS. As the use of SAF reduces an aircraft operator’s overall emissions output, this would ultimately reduce the number of EU ETS allowances it would be required to purchase. Operators should check directly with their competent authority where they are registered for the EU ETS to determine the level of credit that would be given for the use of SAF under the system.

\(^{14}\) https://ec.europa.eu/clima/policies/ets_en

The aviation industry has kept its focus on improving efficiency and reducing its CO\(_2\) footprint via the pillars.
SAF blending agents must have the same qualities and characteristics as conventional jet fuel in order to substitute and be blended with conventional jet fuel. This is important to ensure that manufacturers do not have to redesign or recertify engines or aircraft, and that fuel suppliers and airports do not have to modify or build new jet fuel supply chain infrastructure and support systems.

At present, the industry and regulators are focused on approving multiple pathways for the production of SAF, and when these blending components are blended with conventional jet fuel to the requirements of ASTM D7566, to produce a drop-in replacement to conventional jet fuel. As of this writing, the maximum permissible blending level for the different pathways ranges from 10 to 50 percent.

Going forward, industry representatives are working on approaches that may allow for the approval of drop-in fuels that don’t require blending. Intermediate steps between now and then may allow for increasingly higher blending levels. For the moment, the following summary details the path to SAF validation.

ASTM D1655 (Standard Specification for Aviation Turbine Fuel)

This designation defines specific types of aviation turbine fuel for civil use in the operation and certification of aircraft, and describes fuel found satisfactory by the OEMs and regulatory authorities for the operation of aircraft and engines. The specification can be used as a standard in describing the quality of aviation turbine fuel from the refinery to the aircraft wing tip; the designation covers two types (or grades) of commonly used jet fuel that differ in freeze point:

- **Jet-A**: commercial jet fuel grade commonly used in North America (-40°C/-40°F freeze point).
- **Jet A-1**: jet fuel grade commonly used in Canada and outside of North America (-47°C/-52.6°F freeze point).

ASTM D7566 (Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons)

This designation defines characteristics and properties of both the neat synthesized blending components, as well as the blended aviation turbine fuel equivalent (jet fuel). The synthesized components can be derived from many sources, not just those from which conventional jet fuel is refined (petroleum, shale oil, oil sands). This can include jet fuel produced from coal, natural gas, landfill recovery gas, biomass (lignocellulose, sugars, fats, oils and greases), waste streams, synthetic gas, etc. However, jet fuel produced from coal and natural gas will not meet sustainability requirements, meaning such synthetic fuels would not be characterized as SAF.

ASTM D1655 allows fuel that meets the requirements of ASTM D7566 to be recertified as ASTM D1655 fuel. See the end of this document for details on the ASTM international-approved pathways to SAF production under ASTM specifications.
Before being approved by the industry for addition to the D7566 specification, each SAF pathway must undergo strict testing (including, for example, laboratory, component, engine and flight tests) to ensure technical and safety compliance under an internationally recognized standard. This rigorous and comprehensive technical review is a resource-intensive process, which takes time and considerable funding. The industry developed an ASTM standard practice that defines this process: ASTM D4054.15

The technical requirements for an SAF can be summarized thus:

- A high-performance fuel that can withstand the full range of operational conditions required to maintain the certification basis of the aircraft, engine and APU.
- A fuel that can directly substitute conventional jet fuel for turbine-powered aircraft with no requirement for different airframe, engine or logistical infrastructure, or changes to the way the aircraft is operated.
- A fuel that meets or exceeds current jet fuel specifications (see discussion of D1655 above).

Testing

Safety is the aviation industry’s top priority, which means the specific requirements of any fuels used in aircraft, and the process for testing potential new fuels, are particularly rigorous. Through testing in laboratories, in equipment on the ground and under the extreme conditions of in-flight operations, an exhaustive process determines the suitability of SAF.

In the laboratory

Researchers develop SAF that has similar properties to conventional jet fuel, Jet-A or Jet A-1. This is important, because fuels are used for many purposes inside the aircraft and engine, including as a lubricant, cooling fluid and hydraulic fluid, as well as for combustion.16

15 The Commercial Aviation Alternative Fuels Initiative (CAAFI) has developed a guide for ASTM D4054. It can be found at: http://www.caafi.org/information/pdfs/d4054_users_guide_v6_2.pdf

16 In general, the synthesized fuel molecules are identical to those found in petroleum-based jet fuel (pure hydrocarbons comprised of paraffins, isoparaffins, cyclo-paraffins and aromatics in the C7-C17 chain-length range). However, they may not all be present, or present in the ratios typically found in petroleum-based jet fuel; hence, the aviation community may require these fuels to be blended with petroleum-based jet fuel, but limited to certain maximum levels.

On the ground

Tests evaluate performance and operability at several power settings from ground-idle to take-off, which is then compared to performance with conventional jet fuel. Tests include measuring the amount of time it takes for an engine to start, how well the fuel stays ignited in the engine and how the fuel performs in acceleration and deceleration. Tests are also completed to ensure the fuels do not have a negative impact on the materials used in building aircraft components. Other tests are aimed at checking APU and aircraft fuel system components (including fuel control, pumping and gauging). Finally, emissions testing compares the exhaust emissions and smoke levels for the SAF to those produced by using conventional jet fuel. As an aside, the industry has shown that use of SAF will reduce operational emissions of sulfur oxides, particulate matter (both count and mass) and carbon monoxide.

In the air

Once the lab and ground tests have been completed and analyzed, the OEMs determine whether additional flight testing is needed to address any unique concerns, up to and including endurance testing. Several OEMs, airlines and operators have provided aircraft for non-conventional fuel flight trials designed to:

- Provide data to support fuel qualification and certification for use by the aviation industry;
- Demonstrate that SAF is safe and reliable; and
- Stimulate SAF research and development.

During test flights, pilots perform a number of standard tests, and simulate exceptional flight circumstances, to validate that the fuel delivers operability and performance under all certified operating conditions.
Approval for Specification Inclusion

The approval process has three parts: the test program, the original equipment manufacturer internal review and a determination by a body of experts from aviation and petroleum as to the correct specification for the fuel. The approval process takes place in the Emerging Fuels Section of ASTM’s Aviation Fuels Subcommittee, D02. This process reviews all the evaluations of the candidate fuel versus the D1655 requirements, as well as any additional special considerations imposed by the industry depending on unique attributes associated with the non-conventional fuel’s feedstock or conversion process.

All these properties can be found in the specification, including energy density, freezing point, volatility, thermal stability, viscosity, etc.

ASTM 4054 was developed by the engine and airplane OEMs with ASTM International member support, in order to provide the producer of a non-conventional jet fuel with guidance regarding testing and property targets necessary to evaluate a candidate non-conventional jet fuel.17

Technical Background

Civil aviation authorities and aviation industry stakeholders, including OEMs, have put in place an exhaustive and thorough process to evaluate and approve SAF. These stakeholders work closely with international fuel specification bodies, such as ASTM International to develop standards and certificates. Prior to being approved, SAF must meet certain specifications established by the aviation community itself, and as outlined in the appropriate specifications (ASTM D7566, D1655).

The ASTM specifications simply identify approaches the industry has deemed acceptable to offer D1655 equivalency. Once a non-conventional fuel has been fully vetted, and the industry has approved its inclusion as an annex to ASTM D7566, it is recognized as offering D1655 conventional fuel equivalence. It can then be produced by multiple producers utilizing the technology defined in the D7566 spec. If the non-conventional fuel meets certain sustainability attributes, it can be called SAF. Such fuel can be used without any additional restrictions, allowing it to be adopted by other international standards.18

SUMMARY

17 The Commercial Aviation Alternative Fuel Initiative (CAAFI) has prepared an “ASTM D4054 User’s Guide” which can be found at http://www.caafi.org/information/pdf/D4054_users_guide_v6_2.pdf

18 There are other specifications, beyond ASTM D1655, for jet fuel in various countries around the world, (e.g., GOST in the former Soviet States, DEF STAN 91-991 for some British Commonwealth states, and several other country-based specs such as China’s No. 3 Jet Fuel and Brazil’s QAV-1). In most cases, these specs are being updated to include new D7566 annexes as they are added. These other standards only come into play with someone operating a non-Western certificated product whose operating manual might make a different fuel reference, or when someone attempts to purchase fuel in one of these countries where ASTM is not the standard specification.
SAF Production Today

Any SAF considered for use by the industry must meet all the criteria of, and be included in, ASTM D7566. These criteria apply to both the neat (un-blended) synthetic fuel component, as well as those of the blended jet fuel. That is, the non-conventional component must meet the requirements of the annexes therein, and it then must be blended with conventional fuel and be certified as meeting the requirements of D1655, before becoming fungible within the industry’s jet fuel supply chain systems.

The reasons for the current blend limits are to ensure the appropriate level of safety and compatibility with the aircraft fueling systems (e.g., maintaining a minimum level of aromatics, which are necessary for the different systems, or to meet the density requirements of ASTM D1655). It is, however, likely that higher blend limits may be approved in the future, and that some non-conventional types may contain a full suite of hydrocarbon molecules that fully mimic those found in jet fuel, and not require blending.

The diagram below illustrates how conventional jet fuel is blended with SAF blending agents and approved for technical compliance.

Purchasing SAF Today

At this time, SAF is not widely available, but this is expected to change. There are currently a limited number of airports and operators using SAF on a routine, ongoing basis. Business aviation manufacturers and fuel suppliers are also working to help business aircraft operators increase their use of SAF. Several business aviation operators and manufacturers have secured contracts with suppliers for SAF. Most of the manufacturers and operators use these fuels on a routine basis to satisfy sustainability goals, and have undertaken many high-profile flights using SAF. The industry is trending in the right direction, with the use of SAF steadily expanding around the globe, driven by a desire to be a responsible steward of the environment.
The broader aviation industry has long been committed to the development of sustainable aviation fuel as part of its commitment to curb emissions. The industry is well positioned to be a priority user of non-conventional fuels within the transportation sector, due to factors such as the relatively low number of operators, the prevalence of fleets, especially among the airline segment (as opposed to individual owners of cars, for example), a relatively small distribution network (compared to autos and trucks, for example) and an industry already committed to the fuel’s production, availability and use. Production of SAF may become more economically viable and compete with conventional fuels as costs are lowered by improvements in production technology, and through economies of scale in production and integration into the supply chain, plus regulatory incentives or credits, or as the price of petroleum-based jet fuel rises due to the cost of crude, cost of refining and/or policy changes.

Since the first SAF-fueled test flight in 2008, technological progress has been remarkable. However, the actual uptake of SAF is modest, relative to total industry demand. This is in part due to relatively small production levels. Without economies of scale, the unit cost of production remains, in general, higher than conventional fuels, and this impedes its wider use. For SAF to be scaled up to commercially viable levels, substantial capital investments are required to develop refining and processing capacity.

Worldwide SAF Production Forecast

Announced intentions* with specific commitments to SAF

<table>
<thead>
<tr>
<th>Year-end Production Levels (M Gpy)</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neste Porvoo</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuller #1, Sierra</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gevo Slidbee</td>
<td></td>
<td></td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RED ROCK Biofuels Lakeview</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total La Mede</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Singapore & Rotterdam</td>
<td></td>
<td></td>
<td></td>
<td>481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuller Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SkyNRG Delfzijl</td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuller New Orleans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>#2, Gary, IN</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go Sunshine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neste Go sunshine*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Not comprehensive; CAAFI estimates (based on technology used & public reports) where production slates are not specified.
There have been some long-term offtake agreements from airlines and business aviation manufacturers. These agreements have been modest in scale, in part because the fuel is more expensive than conventional jet fuel. In these cases, SAF is not sequestered for use by an individual operator; rather, it is incorporated directly into airport fuel farms, and, while all operators there could use it, the credit benefits for carbon reduction are allocated to the purchasing entity. SAF has also been made available on an ad hoc basis to several business aviation locations around the world, most associated with educational and awareness initiatives for industry, policymakers and the general public.

As this trend continues, new and existing producers will be able to attract more investment, while many of the largest refiners contemplate participating in some fashion (e.g., through joint ventures or other agreements), resulting in potential growth of the non-conventional fuel industry. A key factor for enabling producers to attract investment is obtaining offtake agreements. Business aviation can potentially participate in facilitating offtake via fuel suppliers, FBOs or directly with producers.

The industry is well positioned to be a priority user of non-conventional fuels within the transportation sector.
Why Should You Use SAF?

What’s in it for your company’s bottom line? There are several concrete benefits flowing from the use of SAF. For some of the largest business aviation operators, the implementation of CORSIA for international operations globally will provide those covered operators opportunities to meet their obligations through increasing their use of SAF.

As noted earlier in this publication, the use of SAF is beneficial under the obligations of both CORSIA and the EU ETS. In straightforward terms, the overall life-cycle emissions output of SAF is lower than that of the life-cycle emissions for conventional jet fuel, which means that through the use of SAF, an operator has already reduced its overall emissions output. Therefore, any emissions obligations under both schemes are reduced, so less offsetting would be required.

Last, but not least, the use of SAF may contribute to the achievement of your corporate social responsibility policy objectives and corporate sustainability metrics – or those of your company – as reported to shareholders and investors.

In the end, the business aviation industry and its stakeholders must demonstrate that they remain a responsible stewards of the environment for many reasons, including the need to preserve its ability to grow and fend off onerous regulatory and/or legislative measures that might constrain such growth.
GENERAL

How can I help to increase the use of SAF?

Make your desire for SAF known to your FBO and fuel supplier. Indicating your commitment to purchasing the fuel, should it become available to you, will help producers, suppliers and FBOs to understand the level of future demand and encourage them to move forward with contracting for greater volumes of SAF. Additionally, communicate with your government representatives, as they may be able to assist the commercialization of SAF through various policy options.

REGULATORY

Do I need special approval for my aircraft to fly with SAF?

No, not if the SAF is produced to the requirements of ASTM D7566 and re-identified as ASTM D1655 jet fuel. FAA Special Airworthiness Information Bulletin (SAIB) NE-11-56R2 summarizes:

“...jet fuel made from...synthetic blending components that meet the requirements of ASTM International Standard D7566 are acceptable for use on aircraft and engines certificated for operation with D1655 Jet-A or Jet A-1 fuel if they are re-identified as D1655 fuel...When D7566 jet fuels are re-identified as D1655 fuel, they meet all the specification requirements of D1655 fuel and, therefore, meet the approved operating limitations for aircraft and engines certificated to operate with D1655 fuel, unless otherwise prohibited by the engine or aircraft type certificate (TC) holder.”

The same bulletin states the following in its recommendations:

1. “These fuels are acceptable for use on those aircraft and engines that are approved to operate with Jet-A or Jet A-1 fuels that meet the D1655 standard.

2. Aircraft Flight Manuals, Pilot Operating Instructions, or TCDs that specify ASTM D1655 Jet-A or Jet A-1 fuel as an operating limitation do not require revision to use these fuels.

3. Current aircraft placards that specify Jet-A or Jet A-1 fuels do not require revision and are acceptable for use with these fuels.

4. Operating, maintenance, or other service documents for aircraft and engines that are approved to operate with ASTM D1655 Jet-A or Jet A-1 fuel do not require revision and are acceptable for use when operating with these fuels.

5. There are no additional or revised maintenance actions, inspections or service requirements necessary when operating with these fuels.”

Do I need to register my aircraft any differently if I use SAF?

No.

Is SAF recognized by the FAA and other aviation authorities?

Yes. These fuels are acceptable for use on aircraft and engines approved to operate with Jet-A or Jet A-1 fuels meeting the D1655 standard. The same is true for EASA, as per CM-PIFS-009. Not all aviation authorities have released formal guidance documentation. However, if the SAF enters the fuel distribution system as D1655, no formal guidance is required for operations already meeting regulatory compliance (engine or aircraft manuals, or operating certificates) via the use of D1655 fuel.

TECHNICAL OPERATIONS

Does the use of SAF have any negative impact on APU and main power plant performance, other components — including fuel tanks and fuel systems — airframe, maintenance procedures/requirements, and/or product warranties?

No. Selected aircraft OEMs, engine and APU manufacturers, as well as manufacturers of other components, participated in the testing process, and that testing found that SAF is compatible for use in their products with no modifications required, and with no need for recertification or additional validation.

FLIGHT OPERATIONS

Will my aircraft perform the same under all conditions (for example, extreme hot and cold temperatures)?

SAF is fully approved to meet the specifications of conventional jet fuel. This means that it performs just like conventional jet fuel, as it meets the specifications contained in ASTM D1655.

SAF blending agents (i.e., synthetically produced hydrocarbons defined in ASTM D7566 prior to blending with conventional jet fuel) generally have a lower mass density than conventional fuels, but final SAF blended fuels still fall within the ASTM D1655 specification. They also have had slightly higher energy mass content. Operators should be aware of the specifications of the fuel, and follow standard flight-planning practices.

Can SAF be used on all fixed wing and rotor wing aircraft?

Yes, any SAF compliant with the requirements of ASTM D7566 (including blending) is recognized as meeting the characteristics of traditional petroleum-based conventional jet fuel approved under ASTM D1655, which can be used in all fixed-wing and rotor-wing aircraft using conventional jet fuel.

Do I have to fly differently if I have SAF in the tank?

No, SAF does not affect how you fly the aircraft. Flight planning should consider the appropriate fuel density, just as it does for conventional jet fuel.

Do I have to obtain a certificate of analysis?

No, an approved fuel certificate of analysis is not required. However, you can obtain a certificate, upon request, from your fuel supplier.

Do I require a special placard for my aircraft?

No.

Can biocide additives be added to SAF blended fuel?

Yes. SAF, once blended correctly to ASTM D7566 requirements and distributed to the end user, is a drop-in, fungible fuel, and is considered ASTM D1655 jet fuel. Approved biocides may be added at aircraft manufacturers’ required dosages, the same as allowable in Jet-A ASTM D1655 fuels.

Does the use of SAF contribute to microbial growth in fuel tanks?

There is no evidence that SAF blends exacerbate microbial growth in fuel tanks. The front end of the SAF refining process is adapted for the feedstock (to access the hydrocarbons via deconstruction and conversion), while the rest of the process produces physical fuel molecules that are pure hydrocarbons. There is no extraneous material from the process that would support microbes any better. While it is true that there is less sulfur in SAF, studies have shown that low sulfur fuels do not lead to an increase in microbial contamination volume. SAF should not be confused with other “biofuels” (e.g., biodiesel or ethanol), which are not direct replacements for the conventional fuel they are displacing. Finally, microbial growth is more directly related to handling and storage, and the introduction of water and other particulates, emphasizing the need for diligence in managing any type of jet fuel – conventional or SAF.

FUEL CHARACTERISTICS

What is SAF (sustainable aviation fuel)?
SAF is Jet-A/A-1 fuel that meets requirements per ASTM D1655 (US), Def. Std. 91-91 (British) and CAN/CGSB-3-23 (Canadian) jet fuel specifications, whose origin is ASTM D7566 (Aviation Turbine Fuel Containing Synthesized Hydrocarbons), and is re-identified as D1655 Jet-A or Jet A-1 fuel.

Is SAF the same as bio jet fuel, synthetic jet fuel or renewable jet fuel?
There are various terms used to describe non-fossil-based hydrocarbon fuel. Often, the term “biofuel” is used. However, the aviation industry avoids this terminology, as the term is not sufficiently broad to cover all envisioned feedstocks, nor does it specify the sustainability aspect of these fuels (which aviation highlights). Some biofuels, if produced from non-sustainable feedstocks, such as unsustainably produced crops that foster significant land-use change, can cause additional environmental damage, making them unsustainable for aviation’s purposes.

How is SAF made?
Specialized production facilities convert sustainable (e.g., renewable or recycled) materials to pure hydrocarbons found in jet fuel. The renewable content is then blended with conventional jet fuel to produce a final product that meets the D1655 conventional jet fuel specification. If the entire process is shown to meet certain sustainability requirements, the fuel can be called SAF, or an SAF blend. SAF blends are mixtures of conventional Jet-A/A-1 fuels and synthetic fuel blending agents produced via one of several industry-approved “pathways” (See ASTM D7566 Annexes A1 - Ax).

What fraction of non-conventional/renewable molecules might we expect to get in an SAF blend?
As stated above, SAF blends are originally created by blending renewable molecules (neat SAF) with conventional fuel. The amount of blending may vary by process and manufacturer, but may not exceed the limits in the D7566 specification, with maximum levels ranging from 10 to 50 percent. There is no minimum level defined.

The actual level will be determined by how the SAF was originally created, and whether it continued to be blended with additional jet fuel along the supply chain.

Does it matter how much renewable content is in my SAF?
The level of carbon intensity that can be claimed by the end user will be driven by the life-cycle assessment of the renewable component of the blended fuel. So, the level of blending does matter to the end user, who may be interested in understanding exactly how much they are improving their carbon footprint. Different SAFs also have different sustainability or carbon index scores depending on the type of feedstock used, the conversion technology and the logistics of the supply chain.

How is SAF handled?
While ASTM D7566 and D1655 do not specifically call out quality control and handling practices, they do say to follow industry standards such as, but not limited to, standards provided by the Energy Institute (EI), the Joint Inspection Group (JIG) and Airlines for America (A4A). The manufacturing and blending of the conventional and non-conventional agents, as well as the procedures and quality control practices shall be conducted at locations that follow these standards. Example: EI/JIG Standard 1530 - Quality assurance requirements for manufacture, storage and distribution of aviation fuel to airports.

Can I mix SAF coming from multiple feedstocks, conversion processes or producers?
Yes. Following its initial blending, SAF is a “drop-in” fuel and can therefore be co-mingled with other equivalent specification fuel (e.g., ASTM D1655) without limitations in railway cars, fuel trucks, airport fuel storage facilities and aircraft fuel tanks.
FREQUENTLY ASKED QUESTIONS

OPERATORS & OWNERS (cont’d)

FINANCIAL CONSIDERATIONS

Will flying with SAF have an impact on my CORSIA contribution in the future?

Yes. ICAO has developed monitoring, reporting and verification (MRV) standards for compliance with CORSIA, for operators that are not subject to certain exemption criteria. The proper crediting of carbon emissions reductions from the use of CORSIA Eligible Fuels, including SAF, by operators with obligations under the scheme can be determined through the ICAO CORSIA Supporting Document – CORSIA Eligible Fuels, available from the ICAO CORSIA website. This document details any credit or physical obligation reduction commensurate with the net life-cycle analysis (LCA) CO\(_2\) reduction of the SAF purchased/used by the operator.

Is SAF more expensive than traditional jet fuel?

Today, the cost of SAF is typically higher than the price of petroleum-based Jet-A. Additionally, transportation costs for the fuel will vary and can add to the overall cost of the fuel. Several federal, state and regional policy incentives targeting the reduction of carbon emissions may also impact the price of fuel for certain purchasers and at certain locations.

Can I get financial compensation/a tax incentive for using SAF?

As noted above, those operators (generally only the largest) who may be subject to CORSIA will likely be able to meet and reduce their obligations via the purchase of SAF, or a combination of SAF and offsetting.

The EU ETS also provides incentives to aircraft operators for the use of SAF that must comply with sustainability criteria defined in the Renewable Energy Directive (RED), which provides emissions credits under the ETS. As the use of SAF reduces an aircraft operator’s overall emissions output, this would ultimately reduce the number of EU ETS allowances it would be required to purchase. Operators should check directly with the competent authority where they are registered for the EU ETS to determine the level of credit that would be given for the use of SAF under the system.

Given that SAF costs more and – as a small- to medium-sized business aviation operator – I may not even be subject to ICAO’s CORSIA scheme, why should I bother using SAF? What’s in it for my company?

The business aviation industry committed in 2009 to improve its efficiency and do its part to curb emissions.

There is considerable political pressure in many parts of the world to reduce emissions from aviation by restricting flying, or imposing severe extraneous costs on it. Business aviation is often portrayed as an inefficient and wasteful mode of transportation used only by wealthy individuals.

The industry has worked hard, with some success, to counter these myths and to emphasize the bottom-line value of business aviation to companies and to the economy. This is not enough, however – it is important for the long-term economic survival of business aviation that the industry can demonstrate through concrete measures that it is a responsible steward of the environment.

The aviation industry is at the forefront of environmental responsibility, and is the first industry to have developed international environmental standards for both manufacturers and operators. The industry’s proactive stance has helped stave off significantly more restrictive environmentally meaningful standards, as well as supporting national and regional regulations that allow the industry to grow in a sustainable manner. The business aviation sector is aggressively promoting the use of SAF in recognition of the importance of ensuring that the industry can continue its sustainable growth.

Companies can also voluntarily participate in carbon-offsetting programs that are available in their region or country, which may provide added incentives.

What sort of actual emissions reductions can I expect to achieve by using SAF?

The use of SAF results in a reduction in carbon dioxide (CO\(_2\)) emissions across its life-cycle. That is, even when considering the emissions produced in growing, transporting, harvesting, processing and refining a particular feedstock, SAF has been shown to provide significant...
If an FBO is interested in purchasing and selling SAF, what should it do?
It is important for an FBO desiring to sell SAF to:
• Contact the fuel supplier for information on SAF.
• Become well acquainted in advance with the relevant ASTM D7566 standard, to ensure that only qualified fuels are involved in any supply transactions.
• Understand how, if at all, the FBO could participate in the acquisition and handling of fuel to facilitate the introduction of SAF (e.g., taking SAF from multiple producers or suppliers).

How does an FBO receive SAF?
The fuel supplier will arrange transportation of SAF to the FBO. Standard fuel acceptance procedures should be used.

Are there special procedures required for storage and delivery of SAF?
There is no difference between SAF blends and conventional jet fuel regarding their delivery, storage and quality control procedures. A key factor to consider is whether the SAF is purchased for a single client (who may desire sequestration of the fuel for fueling specific aircraft), or for general use. SAF blends are fully fungible; thus, they can be commingled in airport storage tanks with existing ASTM D1655 Jet-A/A1 fuels.

Is special training required for FBO employees to handle SAF?
While all FBOs should provide comprehensive training in the handling of aviation fuels, no additional training is required for the handling of SAF blends. FBOs should coordinate with their fuel supplier to identify any unique training requirements based upon their specific operating conditions. FBOs should educate their staffs on the values of SAF, and encourage them to promote its use, when available.

Is there an industry standard for defueling an aircraft using SAF?
As with all defueling operations, fuel removed from an aircraft containing SAF should be either disposed of or returned to the aircraft from which it was removed. If any methods other than the standard procedures are being considered, the persons defueling the aircraft should contact their fuel supplier to ensure proper quality assurance and certification procedures are followed to ensure the integrity of the fuel.

How should an FBO handle client concerns regarding compatibility of SAF with aircraft components?
Aircraft OEMs, engine and APU manufacturers – as well as manufacturers of other components – participated in the testing process, and that testing found that SAF is compatible for use in their products with no modifications required, and no need for recertification or additional validation. FBOs can provide a certificate of analysis for the SAF, which is available from the FBO’s fuel supplier.

If clients still have concerns, the FBO should direct clients to contact their OEM regarding any compatibility issues.
Industry-approved methods for SAF blending component production are found in the annexes of ASTM International Specification D7566, as follows (as of the time of this publication):

- **Annex A1**: The Fischer Tropsch (FT) Synthetic Paraffinic Kerosene (FT-SPK) process that converts coal, natural gas or biomass into liquid hydrocarbons through an initial gasification step, followed by the Fischer-Tropsch synthesis. Blending limit: up to 50%;

- **Annex A2**: The Hydro-processed Esters and Fatty Acids (HEFA-SPK) process, which converts vegetable oils and animal fats into hydrocarbons by deoxygenation and hydroprocessing. Blending limit: up to 50%;

- **Annex A3**: Synthetic Iso-paraffin from Hydro-processed Fermented Sugar (HFS-SIP), (formerly referred to as Direct-sugar-to-Hydrocarbon [DSHC]), converts sugars to pure paraffin molecules using an advanced fermentation process. Blending limit: up to 10%;

- **Annex A4**: Fischer Tropsch (FT) Synthetic Kerosene with Aromatics (FT-SKA), same as Annex A1 but adds some alkylated benzenes (e.g., from the processing of coal tar or other refinery sources) to provide aromatic content to the SAF. Blending limit: up to 50%;

- **Annex A5**: The Alcohol to Jet SPK (ATJ-SPK) pathway starts from an alcohol to produce an SPK (through dehydration of the alcohol to an olefinic gas, followed by oligomerization to obtain liquid olefins of a longer chain length, hydrogenation and fractionation). This annex is intended to eventually cover any C2-C5 alcohol feedstock; at present, it only covers the use of isobutanol and ethanol. Blending limit: up to 50%;

- **Annex A6**: Catalytic Hydrothermolysis Synthesized Kerosene (CH-SK or CHJ). Hydroprocessed synthesized kerosene containing normal and iso-paraffins, cyclopentanes and aromatics produced from hydrothermal conversion of fatty acid esters and free fatty acids (lipids or fats, oils and greases) along with any combination of hydrotreating, hydrocracking or hydroisomerization, and other conventional refinery processes, but including fractionation as a final process step. Blending limit: up to 50%;

- **Annex A7**: Hydroprocessed Hydrocarbons (HHC-SPK or HC-HEFA). This conversion process is similar to Annex A2, but expands the definition of allowable feedstocks to include pure hydrocarbons produced from biological sources (as opposed to free fatty acids and fatty acid esters), for instance from the algae species *Botryococcus braunii* that produces tri-terpenes that can be hydroprocessed to jet fuel blending agents. Blending limit: up to 10%.
This guide was created by the Business Aviation Coalition for Sustainable Aviation Fuel with the support of its member companies.

For additional information, you may contact the sponsoring organizations below:

Commercial Aviation Alternative Fuels Initiative (CAAFI):
- www.caafi.org
- info@caafi.org

European Business Aviation Association (EBAA):
- www.ebaa.org
- +32 2 318 28 00
- info@ebaa.org

General Aviation Manufacturers Association (GAMA):
- www.gama.aero
- +1 (202) 393-1500
- info@gama.aero

International Business Aviation Council (IBAC):
- www.ibac.org
- +1 (514) 954-8054
- info@ibac.org

National Air Transportation Association (NATA):
- www.nata.aero
- +1 (202) 774-1535
- info@nata.aero

National Business Aviation Association (NBAA):
- www.nbaa.org
- +1 (202) 783-9000
- info@nbaa.org

Learn more

Follow on social media
- [twitter](https://twitter.com)
- [facebook](https://facebook.com)
- [linkedin](https://linkedin.com)
- [instagram](https://instagram.com)

#sustainability
#SAFNOW
EDITION 2 | 2020

Learn more
www.FutureOfSustainableFuel.com

Follow on social media

#sustainability
#SAFNOW

Printed on Recycled Paper